ORIGINAL PAPER

Effects of various factors on capacitive properties of $VO_x \cdot nH_2O$ powders in aqueous electrolyte

Lian Mei Chen · Qiong Yu Lai · Hong Mei Zeng · Yan Jing Hao · Jian Hua Huang

Received: 6 February 2010/Accepted: 24 October 2010/Published online: 10 November 2010 © Springer Science+Business Media B.V. 2010

Abstract In this work, effects of drying temperature, pH of aqueous electrolyte and current density on capacitive performance of $VO_x \cdot nH_2O$ material were firstly investigated. $VO_x \cdot nH_2O$ powders were prepared by a melt quenching method. The samples were characterized by X-ray diffraction analysis (XRD) and Fourier transform infrared (FTIR). The capacitive properties of $VO_x \cdot nH_2O$ samples were examined by cyclic voltammetry and galvanostatic charge/discharge test. $VO_x \cdot nH_2O$ sample which was obtained at the drying temperature of 80 °C, delivers a maximum specific capacitance of 227.3 F g⁻¹ and exhibits excellent capacity retention in the potential range of -0.3 to 0.7 V at a current density of 200 mA g⁻¹ in NaNO₃ solution with pH 2.

Keywords $VO_x \cdot nH_2O \cdot Capacitive properties \cdot Drying temperature \cdot pH$

1 Introduction

Supercapacitors are very interesting charge-storage devices with high energy density and high power density. Recently, they have attracted worldwide attention due to their potential applications in hybrid electric vehicles, back-up

L. M. Chen

power storage, peak power sources, and so on [1, 2]. Based on the charge-storage mechanism, supercapacitors are classified as: electric double-layer capacitors (EDLCs) that store charge by utilizing the double-layer capacitance at an electrode/electrolyte interface; and pseudo-capacitors that store charge by utilizing the pseudo-capacitance arising from fast and reversible Faradaic reactions of electroactive materials with several oxidation states [3, 4]. Compared with EDLCs, more research has been focused on pseudocapacitors which have higher specific capacitance. Traditionally, hydrous ruthenium oxide ($RuO_2 \cdot xH_2O$) has been an ideal electrode material for pseudo-capacitors since it exhibits excellent pseudo-capacitive behavior with great specific capacitance and good reversibility in strong acidic electrolyte [5-8]. Unfortunately, its large-scale application is unfeasible owing to its high cost and rarity in natural resource. Therefore, more economical transition-metal oxides (such as MnO₂, NiO, and V₂O₅, etc.) are considered as promising alternative electrode materials for supercapacitors [9–14].

Among these transition-metal oxides, V_2O_5 is an attractive electrode material because of its low-cost, modest electronic conductivity, easy preparation, as well as several stable oxidation states. The application of V_2O_5 in Lithium-ion rechargeable battery has been widely recognized and well studied [15–17], but there are few reports about V_2O_5 as electrode material for pseudo-capacitor. Lee et al. [18] firstly reported that amorphous V_2O_5 displayed 350 F g⁻¹ between -0.2 and 0.8 V in an aqueous KCl electrolyte with pH 6.67. After 100 cycles, the specific capacitance rapidly declined to about 200 F g⁻¹. Later, Reddy et al. [19] prepared nano-porous V_2O_5 with crystalline structure, which delivered an initial specific capacitance of 214 F g⁻¹ and exhibited poor cycling life in 2 mol L⁻¹ KCl solution. Jayalakshmi et al. [20] applied a

L. M. Chen · Q. Y. Lai (⊠) · H. M. Zeng · Y. J. Hao · J. H. Huang College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China e-mail: Laiqy5@hotmail.com

Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637000, People's Republic of China

thermal decomposition method to synthesize crystal V₂O₅ powders that showed a fairly low specific capacitance of 12 F g⁻¹ in 0.1 mol L⁻¹ KCl solution. Therefore, further research is still needed to improve capacitive performance of vanadium oxide. In this article, VO_x·nH₂O samples were prepared by a melt quenching method. The effects of drying temperature, pH of aqueous electrolyte, and current density on capacitive behavior of VO_x·nH₂O were firstly discussed, and then the optimum conditions were obtained.

2 Experimental

2.1 Preparation of $VO_x \cdot nH_2O$ powders

VO_x·*n*H₂O powders were prepared by a melt quenching method. Crystalline V₂O₅ powders were melted at 800 °C in a muffle furnace. After being heated for 20 min, the melt was quickly quenched into distilled water with stirring. After 2 h, the formed brownish sol was filtered to remove a small quantity of insoluble impurities. The sol was constantly stirred until gels were formed. Finally, the gels were dried at 40, 80, 120, 160, 200, 240 °C under vacuum, respectively. The obtained VO_x·*n*H₂O samples were correspondingly labeled as VO-1#, VO-2#, VO-3#, VO-4#, VO-5#, and VO-6#.

2.2 Characterization of $VO_x \cdot nH_2O$ samples

The samples were characterized by X-ray diffraction (XRD) using a D/max-rA diffractometer with Cu K_{α} radiation operated at 40 kV and 100 mA in the range of 10–70° ($\lambda = 0.15418$ nm). Fourier transform infrared (FTIR) spectra were obtained by Perkin-Elmer 16 pc. The samples were mixed with KBr and examined in the wave number range of 400–4000 cm⁻¹.

2.3 Electrochemical measurements

The VO_x·*n*H₂O electrode was prepared by mixing VO_x·*n*H₂O powders with acetylene black and polyvinyidene fluoride (PVDF) binder (in a weight ratio of 70:25:5) and grinding the mixture with *N*-methy1-2-pyrrolidine (NMP) as the solvent. The formed slurry was dried in air with infrared lamp to evaporate the NMP solvent. The resulting mixture powders were pressed onto stainless steel mesh (diameter is 5 mm), and then dried at 60 °C under vacuum to remove the residual solvent. The typical mass of active material on a VO_x·*n*H₂O electrode was approximately 1.5 mg.

The cyclic voltammetry (CV) was conducted in a threeelectrode system comprising a $VO_x \cdot nH_2O$ electrode, a platinum electrode and a saturated calomel electrode (SCE) that serve as the working, counter, and reference electrode, respectively. The tests were carried out with LK2005 electrochemical workstation system in $1 \text{ mol } L^{-1} \text{ NaNO}_3$ solutions with various pH values.

The charge/discharge test was performed in a twoelectrode cell fabricated with two $VO_x \cdot nH_2O$ electrodes which were separated by a Teflon gasket (inner-diameter of 5 mm, thickness of 3 mm). The experiments were carried out by Neware battery program-control testing system in 1 mol L⁻¹ NaNO₃ solutions with pH 7 and pH 2.

3 Results and discussion

3.1 IR and XRD analysis

The IR spectra of VO-2#, VO-4#, VO-5#, and pure crystalline V₂O₅ powders as starting material are shown in Fig. 1. The weak absorbance peak at 1627 cm⁻¹ is assigned to the bending vibration of O–H, confirming residual water within these samples. In Fig. 1a, the strong peaks at 1006, 757, and 528 cm⁻¹ are the IR signature of V₂O₅ xerogel, which are assigned to the stretching vibration peak of V=O, the asymmetric and symmetric stretching vibration peaks of V–O–V, respectively [21]. Similarly, the three strong peaks corresponding to V₂O₅ xerogel are also observed in Fig. 1b and c. These data indicate that the main ingredient in VO_x·*n*H₂O samples is V₂O₅, in which vanadium oxidation state is V(V).

Compared to pure crystalline V₂O₅ (Fig. 1d), the V=O absorbance peaks of VO-2#, VO-4#, and VO-5# shift to lower frequency, which should be resulted from the existence of V(IV) in VO_x·nH₂O [22, 23]. The formation of V(IV) could be attributed to two factors: (i) the decomposition of the melting V₂O₅ [24, 25]; (ii) the interaction of water with V₂O₅ xerogel [26]. As we know, V₂O₅ is *n*-type

Fig. 1 IR spectra of $VO_x \cdot nH_2O$ samples prepared at different drying temperatures

Fig. 2 XRD patterns of $VO_x \cdot nH_2O$ samples prepared at different drying temperatures

semiconductor, and its charge transport proceeds via electron hopping along $V^{4+} \rightarrow O \rightarrow V^{5+}$, so the $VO_x \cdot nH_2O$ samples would have higher electronic conductivity than pure crystalline V_2O_5 because of the existence of V(IV) [27, 28].

One can also observe in Fig. 1 that the V=O peak of $VO_x \cdot nH_2O$ sample shifts to higher frequency with increasing temperature, which should be caused by the decrease of V(IV) concentration. Liu et al. [23] have found that the oxidation of V(IV) to V(V) occurs at high temperature, resulting in the V=O bond length shortening and its absorbance peak blueshift. Of course, the declining content of V(IV) would lead to lower electronic conductivity and worse capacitive performance.

Figure 2 displays XRD patterns of the VO_x·nH₂O samples prepared at different drying temperatures. No distinct diffraction peaks are noted for the samples prepared below 160 °C. Instead, some peaks appear for the samples prepared above 160 °C. The XRD results suggest that VO_x·nH₂O samples are amorphous when dried below 160 °C, and become crystalline at higher temperature.

3.2 Electrochemical analysis

3.2.1 Cyclic voltammetry test

In order to find out the optimal potential range of $VO_x \cdot nH_2O$ material, VO-2# electrode was examined with cyclic voltammetry (CV) in various potential ranges. Figure 3 presents the measured CV curves of VO-2# electrode in neutral NaNO₃ solution at a scan rate of 5 mV s⁻¹. Obviously, the output current evidently declines when the charge voltage is above 0.7 V (vs. SCE). The VO-2# electrode still exhibits good capacitive performance

Fig. 3 CV curves of VO-2# electrode in various potential ranges in neutral NaNO₃ solution

when discharge voltage is declined to -0.3 V (vs. SCE). Hence, the suitable working potential window is between -0.3 and 0.7 V for VO_x·nH₂O material.

The pH value of aqueous electrolyte is another crucial factor in determining the capacitive behavior of $VO_x \cdot nH_2O$ powders. VO-2# electrode was also examined with cyclic voltammetry in alkaline and acid NaNO₃ solution. The pH value of NaNO₃ solution was adjusted with HNO₃ or NaOH solution.

The CV curves of VO-2# electrode in alkaline NaNO₃ solutions with various pH values are shown in Fig. 4. The output current rapidly decreases with the pH value increasing from 7 to 13, revealing that the capacitive properties of VO_x·nH₂O become worse. V₂O₅, as the main ingredient of VO_x·nH₂O sample, is amphoteric oxide, so VO_x·nH₂O can be easily dissolved in alkaline solution (shown in reaction 1), which would result in poor capacitive performance:

$$V_2O_5 + 6OH^- \rightarrow 2VO_4^{3-} + 3H_2O.$$
 (1)

Figures 5 and 6 give CV curves of VO-2# electrode in acid NaNO₃ solutions with various pH values. It can be found in Fig. 5 that the output current slightly increases with the pH value dropping from 7 to 3, and evidently increases at pH 2. However, the current remarkably decreases with increasing cycle number at pH 1 (Fig. 6), indicating that an irreversible reaction occurs. The acidity of V_2O_5 is slightly stronger than its alkalinity, so $VO_x \cdot nH_2O$ can be dissolved in the strong acid solution with pH 1 (shown in reaction 2).

$$V_2O_5 + 6H^+ \rightarrow 2VO^{3+} + 3H_2O$$
 (2)

According to the above results and discussion, the pH value of the aqueous electrolyte for $VO_x \cdot nH_2O$ material should be controlled between 7 and 2.

Fig. 4 CV curves of VO-2# electrode in alkaline NaNO_3 solutions with various pH values

Fig. 5 CV curves of VO-2# electrode in acid NaNO_3 solutions with various pH values

3.2.2 Charge and discharge test

The charge/discharge curves of VO-1# to VO-6# in neutral NaNO₃ solution at a current density of 200 mA g⁻¹ are presented in Fig. 7. All charge/discharge curves are almost linear and the coulombic efficiency is 99–100%, implying that VO_x·nH₂O material has an ideal capacitive behavior. Based on the discharge curves, the specific capacitance (*C*) can be calculated as:

$$C = \frac{2 \times I \times \Delta t}{m \times \Delta V} \tag{3}$$

where I, Δt , m, and ΔV , are the current density, discharge time, the active mass of the single electrode and potential window, respectively.

The initial specific capacitance of VO-1# to VO-6# is listed in Table 1. VO-1# delivers a maximum specific capacitance of 229.2 F g⁻¹, while VO-6# delivers the minimum specific capacitance of 115.6 F g⁻¹. Obviously, the special capacitance declines with increasing temperature.

Figure 8 gives cycling life of VO-1# to VO-6# in neutral NaNO₃ solution at a current rate of 200 mA g^{-1} . VO-1# and VO-6# have poor cycling performance, but the other samples exhibit relatively good cycling life. Therefore, the most appropriate drying temperature is 80 °C in consideration of specific capacitance and cycling performance.

It can be concluded from Figs. 7 and 8 that $VO_x \cdot nH_2O$ samples obtained at different drying temperatures exhibit different specific capacitance values and cycling performance, which should be associated with the structure and water content of $VO_x \cdot nH_2O$ samples. XRD analysis reveals that VO-1# to VO-4# is amorphous, but VO-5# and VO-6# are crystalline. Zheng et al. [5, 6] found that amorphous RuO₂ · nH₂O exhibited better capacitive performance than crystalline RuO₂ did. In our study, VO-6# with welldeveloped crystalline structure also shows the minimum specific capacitance and the poorest cycling performance.

Fig. 7 Charge/discharge curves of $VO_{x'}nH_2O$ samples obtained at different drying temperatures in neutral NaNO₃ solution (1#: 40 °C; 2#: 80 °C; 3#: 120 °C; 4#: 160 °C; 5#: 200 °C; and 6#: 240 °C)

Table 1 The water content and specific capacitance of $VO_x nH_2O$ samples prepared at different drying temperatures

$VO_x \cdot nH_2O$ sample	Drying temperature (°C)	Water content (wt%)	Discharge specific capacitance (F g^{-1})
VO-1#	40	17.2	229.2
VO-2#	80	13.5	215.9
VO-3#	120	11.9	192.8
VO-4#	160	10.8	177.6
VO-5#	200	8.1	141.2
VO-6#	240	4.7	115.6

Fig. 8 Cycling life of $VO_x \cdot nH_2O$ samples obtained at different drying temperatures in neutral NaNO₃ solution (1#: 40 °C; 2#: 80 °C; 3#: 120 °C; 4#: 160 °C; 5#: 200 °C; and 6#: 240 °C)

The VO_x content in the VO_x $\cdot n$ H₂O samples was analyzed by oxidation–reduction titration, and then the water content was calculated (Table 1). It can be noted that the

water content declines with increasing temperature. The suitable water content not only enhances electronic conductivity (see Sect. 3.1), but also improves ionic adsorption/desorption and protonic diffusion in the bulk [5, 6, 9]. However, excessive water content is unfavorable for cycling life because it would make $VO_x \cdot nH_2O$ be easily dissolved in aqueous solution. The water content of VO-1# prepared at 40 °C is up to 17.2 wt%, bringing about its poor cycling performance. The water content of VO-6# prepared at 240 °C is reduced to 4.7 wt%, resulting in the minimum initial specific capacitance. Therefore, the drying temperature of 80 °C is optimum in view of specific capacitance and cycling performance. In the subsequent experiments, VO-2# prepared at 80 °C is selected to investigate other capacitive properties of the $VO_x \cdot nH_2O$ material.

Figurs 9 and 10 present the charge/discharge curves and cycling life of VO-2# electrode in NaNO₃ solution with pH 2, respectively. The relationship between potential and time is quite linear (Fig. 9). The discharge specific capacitance is firstly 227.3 F g⁻¹ and keeps 221.3 F g⁻¹ after 600 cycles in NaNO₃ solution with pH 2 (Fig. 10). VO-2# electrode delivers higher specific capacitance at pH 2 than that at pH 7, which is related to the energy storage mechanism of VO_x·nH₂O. It has been found that MnO₂·nH₂O has two kinds of energy storage mechanism in aqueous electrolyte, proton–electronic mechanism, and ionic adsorption/desorption mechanism [9–11]. We herewith propose a similar energy storage mechanism for VO_x·nH₂O (shown in reactions 4 and 5).

$$VO_a(OH)_b + \delta H^+ + \delta e^- \rightleftharpoons VO_{a-\delta}(OH)_{b+\delta}$$
 (4)

$$VO_a(OH)_b + \delta Na^+ + \delta e^- \rightleftharpoons Na_\delta VO_a(OH)_b$$
 (5)

When pH drops from 7 to 2, it becomes easier for reaction 4 to take place because of increasing H^+

Fig. 9 Charge/discharge curves of VO-2# electrode in NaNO₃ solution with pH 2 at a current density of 200 mA g^{-1}

Fig. 10 Cycling life of VO-2# electrode in NaNO₃ solutions with pH 2 and pH 7 at a current density of 200 mA g^{-1}

Fig. 11 Charge/discharge curves of VO-2# electrode at different current densities in NaNO₃ solution with pH 2

concentration, which would lead to greater specific capacitance.

An ideal electrode material for supercapacitors is able to be charged/discharged at high current density. Figures 11 and 12 show charge/discharge curves and cycling performance of VO-2# electrode at various current densities in NaNO₃ solution with pH 2, respectively. A good linear variation of potential versus time is observed in Fig. 11. At the lowest current density of 200 mA g⁻¹, VO-2# electrode delivers the highest specific capacitance of 227.3 F g⁻¹. When current density is increased to 800 mA g⁻¹, the specific capacitance remains 204.5 F g⁻¹. It is obvious that the specific capacitance slightly decreases with increasing current density. In addition, the specific capacitance value is essentially unchanged after 500 cycles at 800 mA g⁻¹ (Fig. 12), indicating that VO-2# electrode

Fig. 12 Cycling performance of VO-2# electrode at different current densities in NaNO₃ solution with pH 2

still exhibited good cycling performance at high current density in NaNO₃ solution with pH 2.

4 Conclusions

VO_x·*n*H₂O powders were prepared by a melt quenching method. The capacitive properties of VO_x·*n*H₂O samples were strongly affected by drying temperature, pH of aqueous electrolyte, and current density. The optimum drying temperature is 80 °C, and the pH value of aqueous electrolyte should be controlled between 7 and 2. VO_x·*n*H₂O sample which was obtained at 80 °C, delivers a maximum specific capacitance of 227.3 F g⁻¹ and exhibits excellent capacity retention in the potential range of -0.3to 0.7 V at 200 mA g⁻¹ in NaNO₃ solution with pH 2. The specific capacitance slightly decreases with increasing current density, indicating that VO_x·*n*H₂O powders could be charged/discharged at high current density.

Acknowledgments This work was financially supported by the National Natural Science Foundation of China (No. 20701029) and the Key Program of the China West Normal University (No. 412374).

References

- 1. Pang SC, Anderson MA, Chapman TW (2000) J Electrochem Soc 147:444
- 2. Jeong YU, Marthiram A (2001) J Electrochem Soc 148:A189
- 3. Conway BE (1991) J Electrochem Soc 138:1539
- 4. Zheng JP, Huang J, Jow TR (1997) J Electrochem Soc 144:2026
- 5. Zheng JP, Jow TR (1995) J Electrochem Soc 142:L6
- 6. Zheng JP, Cygan PJ, Jow TR (1995) J Electrochem Soc 142:2699
- 7. Ramanni M, Haran BS, White RE et al (2001) J Electrochem Soc 148:A374
- 8. Chang KH, Hu CC (2004) J Electrochem Soc 151:A958
- 9. Jeong YU, Manthirm A (2002) J Electrochem Soc 149:A1419

- 11. Chen Y, Zhang ML, Shi ZH (2005) J Electrochem Soc 152:A1272
- Donne SW, Hollenkamp AF, Jones BC (2010) J Power Sources 195:367
- 13. Liu XM, Zhang XG, Fu SY (2006) Mater Res Bull 41:620
- 14. Patil UM, Salunkhe RR, Gurav KV et al (2008) Appl Surf Sci 255:2603
- 15. Wang JX, Curtis CJ, Schulz DL et al (2004) J Electrochem Soc 151:A1
- 16. Adhikary K, Kikkawa S (1997) Solid State Ionics 99:53
- 17. Mansour AN, Smith PH, Baker WM et al (2002) Electrochim Acta 47:3151
- 18. Lee HY, Goodenough JB (1999) J Solid State Chem 148:81
- 19. Reddy RN, Reddy RG (2006) J Power Sources 156:700

- Jayalakshmi M, Rao MM, Venugopal N et al (2007) J Power Sources 166:578
- 21. Zhao J, Wang GC, Li XW et al (2007) J Appl Polym Sci 103:2569
- 22. Chen W, Peng JF, Mai LQ et al (2004) Mater Lett 58:2275
- 23. Liu XQ, Huang CM, Qiu JW et al (2006) Appl Surf Sci 253:2747
- 24. Xu WX, Yang SY, Hu XC (1989) Acta Physico Chimica Sinica (Chinese Journal) 5:367
- Kang A, Livage J, Collongues R (1974) Phys State Solid A 26:175
- Benmoussa M, Ibnouelghazi E, Bennouna A et al (1995) Thin Solid Films 265:22
- 27. Muster J, Kim GT, Krstic V et al (2000) Adv Mater 12:420
- Krins N, Rulmont A, Grandjean J et al (2006) Solid State Ionics 177:3147